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Bound states in the continuum (BICs) defy conventional wisdom that assumes a spectral separa-
tion between propagating waves, that carry energy away, and spatially localized waves corresponding
to discrete frequencies. They can be described as resonance states with infinite lifetime, i.e., leaky
modes with zero leakage. The advent of metamaterials and nanophotonics allowed the creation of
BICs in a variety of systems. Mainly, BICs have been realized by destructive interference between
outgoing resonant modes or exploiting engineered global symmetries that enforce the decoupling of
a symmetry-incompatible bound mode from the surrounding radiation modes. Here, we introduce
theoretically BICs relying on a different mechanism, namely local symmetries that enforce a field
concentration on a part of a complex system without implying any global symmetry. We exper-
imentally implement such BICs using microwaves in a compact one-dimensional photonic network
and show that they emerge from the annihilation of two topological singularities, a zero and a pole,
of the measured scattering matrix. Our alternative for achieving BICs in complex wave systems
may be useful for applications like sensing, lasing, and enhancement of nonlinear interactions that
require high-Q modes.

INTRODUCTION

Quantum mechanics books, typically, distinguish be-
tween two type of states: bound states whose discrete
energy lies below the continuum threshold (identified by
the asymptotic value of the potential at infinity) and un-
bounded scattering states with an energy inside the con-
tinuum. Examples where these two categories of states
appear include electrons in the presence of finite poten-
tial wells, quantum dots, or atomic potentials. An ex-
ception to the quantum communis intellectus are bound
states in the continuum (BICs) [1–4]. These are spatially
bounded solutions of the Schrödinger equation, with dis-
crete eigenvalues lying inside the continuum of states that
propagate to infinity. They were originally introduced a
century ago by von Neumann and Wigner, using an in-
verse potential engineering approach [5]. The method
assumed a square-integrable BIC wavefunction with a
spatially decaying envelope and, using this as a start-
ing point, they tailored a suitable 3D potential where
this wavefunction is an eigenmode. Such “custom-made”
potentials are unrealistic as they are oscillatory in space
while decaying to infinity as a power law and they have
never been implemented experimentally.

BICs are not a quantum phenomenon but rather per-
tain to all wave systems. This observation extended the
search for BICs to a variety of other platforms including
electromagnetic, acoustic, water or elastic waves (for a
review see [1, 4]). Among the various areas, optics and
photonics have undoubtedly been the tip of the spear as
far as novel realizations of BICs are concerned [1–3, 6–
11]. For example, an inverse design scheme based on
supersymmetric transformations has been implemented
in coupled optical waveguide arrays to engineer the hop-
ping rate between nearest resonators in order to support

BICs [12].
Other, more efficient, BIC schemes have been also de-

veloped and experimentally implemented thanks to the
advent of metamaterials and nanotechnology [1–3]. Per-
haps the most prominent approach that also highlights
the wave nature of the phenomenon, is associated with
“accidental” BICs [13, 14]. In this case, the parameters
of the target system are fine-tuned to achieve cancellation
of outgoing waves to the continuum. A special case of ac-
cidental BIC is associated with Fabry-Perot (FP) config-
urations [8, 15, 16] of two identical resonances which in-
teract strongly through the same radiation channel (e.g.
a waveguide). A third mechanism that leads to BICs is
invoking structures with geometric symmetries [1, 4, 17].
In this case, a trapped mode with a given symmetry can
be embedded into a continuum of states with a distinct
symmetry, ensuring the decoupling of the trapped mode
and thus the suppression of its leakage.
Most of the above BIC proposals have been realized

in extended structures. In fact, there is a non-existence
theorem for BICs in compact structures [1] (see, however,
Refs [18, 19] for exceptions). Finding a genuine BIC in
compact systems is a challenging fundamental problem,
and its solution would allow the implementation of high-
Q resonators having a broad range of potential applica-
tions including lasers, sensors, filters and low-loss fibers
[1, 4].
Here we provide an alternative approach for the im-

plementation of BICs which is based on local symmetries
(see Fig. 1a). As opposed to the symmetry-protected
BICs, we study structures lacking geometric symmetries.
The proposed mechanism relies on the existence of an em-
bedded symmetric subdomain and reveals another back-
door in the non-existence theorem for BICs in compact
structures. In contrast to accidental BICs [1, 4], our con-
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FIG. 1. Experimental setup of a microwave graph detecting bound states in the continuum (BICs) based on
local symmetries. (a) Schematic representation of a complex network supporting a BIC due to the presence of a subnetwork
(cycle) with a local symmetry (red-shaded equilateral pentagon). (b) Schematic representation of the network used in our
experiment. A ”tetrahedron” contains an equilateral triangle where one side length can be varied. The network is opened
by two attached scattering channels. (c) The microwave tetrahedron network used in our experiments. Coaxial cables are
connected by T-junctions at each of the vertices n = 1, 2, . . . , 6. Between vertices 5 and 6, we replace the cable with a phase
shifter allowing us to vary the effective length between these vertices. The reflection amplitudes r11, r22 and the transmission
amplitudes t12, t21 are measured using a vector network analyzer (VNA) connected to the vertices 1 and 2, respectively.

struction relies on a stringent blueprint and allows to an-
alytically predict and control the position of BICs in the
spectrum. Moreover, it leads to an infinite ladder of BIC
states which occur periodically in k−space. We experi-
mentally demonstrate the new scheme using a complex
network of coaxial microwave cables coupled together via
T-junctions, see Figs. 1b,c. The analysis of the experi-
mental scattering matrix demonstrates that the forma-
tion of these BICs originates from the coalescence of two
topological defects with opposite charges: a zero (with
charge +1) and a pole (with charge −1) of the scattering
matrix. Experimental implementations of such networks
have been reported in a variety of frameworks includ-
ing acoustics [20], microwaves [21–26], photonic crystal
waveguides [27] and optics [28, 29].

PHYSICAL MECHANISM FOR
LOCAL-SYMMETRY PROTECTION OF BICS

Let us explain the local-symmetry protection mecha-
nism using complex photonic networks as an example
(Fig. 1a): the subdomain (subnet) that possesses a local
symmetry is formed by a closed loop (ring) of Nl equi-
lateral edges such that mirror symmetry (with respect to
the vertices defining the subnet) and discrete rotation in-
variance is guaranteed (see, for example, the violet pen-
tagon in Fig. 1a with Nl = 5 or the violet triangle in
Fig. 1b with Nl = 3 having a discrete rotational sym-
metry C5v, C3v, respectively). Note that in the case of a
network that is formed by photonic waveguides, the ge-
ometric shape of the edges and the angles between them
are typically irrelevant, see Fig. 1c. In this case the dis-
crete rotation must not be interpreted in physical space.
For example, in case of Fig. 1b, an angle is defined as
2πx/3ℓ where x is a continuous path length along the cy-

cle and x = 0 coincides with a vertex. Then the subnet
that supports a BIC is invariant under the transforma-
tions x → x + ℓ and x → −x, generating the symmetry
group C3v.

Consider the ring first without any connections to the
remaining network. Then, choosing the appropriate sym-
metry class, there are rotation invariant eigenfunctions
which are antisymmetric with respect to the vertices.
That is, we have eigenfunctions vanishing at all vertices
of the subnet. Thus, when the remaining network is cou-
pled to some or all vertices of the subnet via coupling
constants (not necessarily equal at all vertices), these
eigenstates remain unaltered. In particular, if the re-
maining network is open and has a continuous spectrum,
the constructed eigenfunctions will be BICs. This con-
clusion applies only to the subset of eigenstates pertain-
ing to the appropriate symmetry class. All other states
of the subnet will be strongly mixed with the states of
the remaining network and in the large network limit the
overwhelming majority of states will be ergodically dis-
tributed over the whole network, as expected for typical
systems with wave chaos [30].

Note that the term local symmetry does not imply a
subnet with a small total bond-length; rather it refers
to the fact that it involves a subset of connected edges.
In particular, the BIC might be supported by a subnet
that connects distant parts of the total network either by
involving a few long edges or many short ones.

While pure BICs are completely decoupled and do not
contribute to transport across the network, any small
perturbation of the subnet will create quasi-BICs which
act as channels across the network and thus strongly af-
fect its transport properties. The above BIC-mechanism
is independent of specific properties of the network like
the precise boundary conditions at the vertices or their
valency (= the number of connected edges). Most im-
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portantly it does not require any geometric symmetry of
the network as a whole.

TRANSPORT IN COMPLEX NETWORKS AND
BIC FORMATION

Scattering on Complex Networks — We study the
scattering on a complex network of n = 1, · · · , N ver-
tices, where two vertices n,m may be connected by an
edge E = (n,m) with length lE . The position xE = x on
edge E is x = 0(lE) on vertex n(m). The wave ψE(x) on
the edge E satisfies the Helmholtz equation

d2

dx2
ψE(x) + k2ψE(x) = 0 , (1)

where k = ωnr/c0 is the wave number, ω is the an-
gular frequency, c0 is the speed of light, and nr is the
complex-valued relative index of refraction that includes
the losses of the coaxial cables. The solution of Eq. (1)

is ψE(x) = ϕn
sin k(lE−x)

sin klE
+ ϕm

sin kx
sin klE

, where ψE(0) = ϕn
and ψE(lE) = ϕm are the values of the field at the ver-
tices. We turn the compact network to a scattering set-up
by attaching transmission lines (TLs) α = 1, · · · , L to a
subset of the vertices. The field on the αth TL takes the
form ψα(x) = Iαe−ikx +Oαe

+ikx for x ≥ 0 where x = 0
is the position of the vertex. The coefficients Iα(Oα) in-
dicate the amplitude of the incoming (outgoing) wave on
the TLs. At each vertex n, continuity of the wave and
current conservation are satisfied. These conditions can
be expressed in a compact form as [31]

(M + iWTW )Φ = 2iWTI , (2)

where Φ = (ϕ1, ϕ2, · · · , ϕN )T . The L dimensional vector
I contains the amplitudes Iα of the incident field, while
W is a L×N matrix describing the connection between
the TLs and the vertices. A matrix element Wα,n is 1, if
the αth TL is attached to vertex n and zero otherwise.
The N ×N matrix M

Mnm =

{
−
∑

l ̸=n Anl cot klnl, if n = m

Anm csc klnm, if n ̸= m
(3)

incorporates information about the metric (length of
edges) and the connectivity of the network, where A is
the adjacency matrix having elementsAnm = 1 whenever
two vertices m,n are connected and Anm = 0 otherwise.

The scattering field Φ on the compact part of the graph
can be evaluated by solving Eq. (2) for Φ. The same
expression, together with the continuity condition at the
vertices, where the TLs are attached, can be used for
deriving the scattering matrix [31]

S(k) = −Î + 2iW
1

M(k) + iWTW
WT . (4)

For wavenumbers which are integer multiples of π/lnl the
terms Mnm diverge; this can be rectified by appropriate
manipulation of the divergent terms, see [32].

The poles of the scattering matrix in the complex k-
plane are related to resonances i.e. purely outgoing so-
lutions of the wave equation and they are found from
the condition det(M(kp) + iWTW ) = 0. Of interest
are also the zeroes of the scattering matrix defined via
the secular equation detS(kz) = 0. For lossless struc-
tures, causality implies kz = k∗p. The zeroes S(k) = 0
correspond to a special type of wavefronts with time-
modulated amplitude, known as coherent virtual absorp-
tion, which are temporarily trapped inside the structure
without any leakage [33, 34]. When Ohmic losses are
also included, one can find parameters of the structure
for which the complex zeroes cross the real axis. In this
case, there are stationary, perfectly impedance-matched
input wavefronts which are completely absorbed by the
(weakly) lossy elements in the structure which acts as
an interferometric trap, known as coherent perfect ab-
sorber [35]. The exceptional case where the poles are
equal to the zeroes of the S-matrix corresponds to BIC
states which contain neither an incoming nor an outgo-
ing radiation component and exist at a real frequency of
passive structures. Thus a BIC is invariant under time
reversal and it does not affect the on-shell scattering ma-
trix S(k) since it is decoupled from the far-field radiation.
In the topological-defect picture in the complex k-plane a
BIC implies that a charge +1 (S-matrix zero) annihilates
with a charge −1 (resonance) on the real axis. We have
confirmed experimentally this topological feature (see be-
low).

BIC and quasi BIC states – We now identify the con-
ditions that are required for the realization of locally
symmetric BIC states on a complex network. To this
end, we consider a subgraph consisting of C edges that
form a closed loop within the network (for example, in
Fig. 1a, C = 5 for the violet pentagon). We assume
that they have equal lengths ℓ and construct a state
ψc(x) =

√
(2/Cℓ) sin(kMx) which is restricted to this

cycle. This requires kM = Mπ/ℓ and kM = 2Mπ/ℓ
(M = 1, 2 . . . ) for even and odd C, respectively. The
above wave function is zero at the vertices along the sub-
graph. Therefore the state is not affected by further edges
attached to these vertices which couple the subgraph to
the surrounding network and to the continuum. This ar-
gument is completely independent of the topology of the
rest of the network, the number of extra edges that are
attached to the vertices of the cycle, and the number of
attached TLs. Further considerations reveal that it is
possible to relax the assumption of equal edge lengths
ℓ on the subgraph to rationally related lengths. Impor-
tantly, the above construction is just a special case of the
symmetry argument given in the introduction which may
apply also in different situations.

In an experiment, the BICs are manifested as long-
lived quasi-bound (resonant) states that disappear and
reappear in a characteristic manner when the edge
lengths along the subgraph are changed by a small
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FIG. 2. The transmittance and reflectance spectrum versus the phase shifter length variation δ and frequency
f . (a1) The experimental measurements of the transmittance through the graph (input from lead 1, transmittance is the same
as that from lead 2 due to reciprocity) versus the input frequency and phase-shifter length variation δ. (a2) and (a3) the same
as in (a1) but for the theoretical modeling with adjusted loss and without loss, respectively. (b1)-(b3) The reflectance from
lead 1 versus the input frequency and phase-shifter variation δ for experimental measurement, theoretical modeling with loss,
and theoretical modeling without loss, respectively. (c1)-(c3) The same plot as in (b1)-(b3) for reflectance from lead 2. (d)-(f)
The cross-section plot of transmittance T for δ = 6, 0, and −6 mm respectively. The blue solid, red dotted and black solid lines
are for the experimental measurement, theoretical modeling with fitted loss and theoretical modeling without loss, respectively.

amount δ. The values of the wave field at the connec-
tions to the remaining network and the TLs are now
ψc(0) ∼ kδ. Due to this coupling, a BIC gives rise to
a Feshbach resonance with width γ ∼ |δ|2. The lat-
ter reveals itself as a sharp feature in the transmittance
T (f) and left (right) reflectance R1(f) (R2(f)), where
R1 = R2 if there are no losses inside the network. This
feature is absent when δ = 0 and this is an indirect, but
experimentally observable, signature of a BIC in scatter-
ing data.

EXPERIMENTAL IMPLEMENTATION

We consider the tetrahedron network shown in
Figs. 1b,c. This network is relatively simple and it does
not have any geometrical symmetries. At the same time,
the dynamics is rich enough to show typical features
of wave chaos [30, 31, 36, 37]. Its microwave imple-
mentation is done using coaxial cables (Huber+Suhner
S 04272) connected by 6 T-junctions (vertices). The
electrical permittivity of the cables was found to be

ϵ ≈ 1.56(±0.07) + i0.0015(±0.0005) indicating the pres-
ence of uniform losses. Two TLs have been attached at
the vertices labeled 1 and 2, see Figs. 1b,c.

We choose the triangle consisting of the vertices 4,
5, and 6 as the closed loop that supports BICs. The
electrical lengths l45 = l46 = ℓ = 346.6mm are fixed
while the length l56 of the third edge varies such that
l56 = ℓ+δ with δ ∈ [−14, 30]mm (see Supplementary Ma-
terial). The length-variation is done using a phase shifter
whose effective length is controlled electronically. Follow-
ing the theoretical arguments of the previous section we
expect that BICs will appear at δ = 0, for wavenumbers
kM = 2Mπ/ℓ, M ∈ N+ corresponding to frequencies
fM = M c0

ℓ = M × 0.86547GHz. The other lengths of
the network are l13 = l25 = 18.2mm, l23 = 424.2mm,
l16 = 926.5mm, and l34 = 831.4mm.

In Figs. 2a1, b1, and c1, we report the measured trans-
mittance T and reflectances R1 and R2 versus the input
frequency and the tuning parameter δ in the proximity of
the 2nd BIC frequency (2×0.86547GHz ≈ 1.73GHz) in-
dicated by the arrow. The second (third) column reports
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 3. Transmittance spectra at frequencies that are multiples of the fundamental BIC frequency. (a1)-(a3)
The transmittance as a function of input frequency and bond variation δ for the experimental measurement (a1), the theoretical
modeling with loss (a2) and without loss (a3) for the 4th BIC state at 4 × 0.86547 GHz ≈ 3.46 GHz). (b1)-(b3) The same as
in (a1)-(a3) but for the 5th BIC state at 4.33 GHz.

our calculations for the network of Fig. 1b,c in the pres-
ence (absence) of Ohmic losses at the coaxial cables. In
the frequency range f ∈ [1.6, 1.8]GHz, a BIC is predicted
at f2 ≈ 1.73GHz. In all cases we find a resonance moving
linearly from around 1.7GHz at δ = 15mm to 1.76GHz
at δ = −10mm. At δ = 0mm a BIC is formed and the
resonance feature disappears from all three spectra (T (f)
and R1,2(f)). This is the expected indirect signature of
the BIC: since the state is completely decoupled from the
rest of the network and the TLs, any incident radiation
cannot excite it and therefore there are no signatures of
its existence in the scattering matrix elements. Instead,
for small δ ̸= 0, the transmittance T (f ∼ fM ) and re-
flectance R(f ∼ fM ) show a narrow resonance structure
in their frequency-dependence whose width is controlled
by the parameter δ. All these features of the transmit-
tance and reflectance spectra are present in our measure-
ments and in both sets of calculations (with and without
losses). The presence of losses, however, smooths out
some of the sharp characteristics of the (quasi-)BIC res-
onance (first and second columns) which are much more
pronounced in the calculations shown in the third column
where we have considered the same network without any
losses of the coaxial cables.

To further investigate the variations of the resonance
features in T (f) as the tuning parameter changes around
δ = 0 we plot in the right column of Fig. 2, the trans-

mittance spectrum for three different δ values around the
BIC value. For δ = 6mm (Fig. 2d) a narrow resonance
dip (indicated by the red arrow) is evident in both, mea-
surements (blue solid line) and calculations (red dotted
line), where the Ohmic losses of the cables are taken
into account. This dip becomes very sharp in the case
of a lossless network modeling (black solid line). When
δ = 0mm, (Fig. 2e), the resonance dip disappears in all
cases and reappears again when δ = −6mm, (Fig. 2f),
after acquiring a small blue-shift.

We have also confirmed experimentally the appear-
ance of a cascade of bound states at predetermined k-
values which are multiples of a “fundamental” BIC fre-
quency and distinguish our approach from accidental
BICs. To demonstrate this feature, we report in Fig. 3
the transmittance versus frequency and δ in different fre-
quency regions where we expect the BIC to occur, i.e.,
f = 3.35 − 3.55GHz, and f = 4.24 − 4.44GHz. The
same behavior as the one found for the BIC presented in
Fig. 2 is observed here as well. Namely, we observe the
appearance and disappearance of a quasi-BIC mode as δ
varies, signifying the formation of BICs at δ = 0.
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(a) (b)

−1

1

FIG. 4. Formation of a BIC with local symmetry via the annihilation of a zero and a pole pair. (a) Parametric
evolution of poles (red) and zeros (blue) of the scattering matrix over the cable length l56 of the tetrahedron network of Fig. 1b,c
for δ ∈ [−12, 12] mm. The experimental poles (red crosses) zeros (blue-filled circles) have been extracted from the measured
S-matrix. The numerical results are indicated with lines of the respective color and have been extracted from the S-matrix
given by Eq. 4. All data have been shifted along the Im(k) axis by 0.00314 due to the global loss induced by the Ohmic
resistances in the coaxial cables. The fscar = 1.7309 GHz corresponding to the BIC in Fig. 2. (b) Streamlines of the vector field

Ψ⃗ = ∇k⃗arg
(

det(S(k⃗)
)

with k⃗ = (Re(k), Im(k)), showing +1 and −1 topological charges at zeros and poles of the S-matrix

corresponding to a δ = −6 mm.

POLES, ZEROS, AND THE TOPOLOGICAL
STRUCTURE OF BICS

Finally, we analyze the formation of BICs from a topo-
logical perspective [38] by analyzing the parametric evo-
lution of the poles and zeros in the complex frequency
plane as δ is changing. In Fig. 4a the symbols repre-
sent the poles (red crosses) and zeros (blue-filled circles)
of the S-matrix that have been extracted from the mea-
sured S-matrix using the harmonic inversion method [39].
The method was applied to the off-diagonal elements of
the S-matrix for the poles and to the matrix S−1 for
the zeroes. Our data indicate their coalescence at δ = 0
and at the BIC-frequency fBIC as discussed above. The
solid lines correspond to the simulations. The formation
of the BIC in the complex k⃗ = (Re(k); Im(k)) plane,
is a consequence of the annihilation of two topological
defects of the secular function detS(k⃗) [38]: a zero k⃗z
and a pole k⃗p of the scattering matrix which collides
as the perturbation parameter δ vanishes (see Fig. 4a).
The zero (pole) is characterized by the topological charge

q ≡ 1
2π

∮
dk⃗ · ∇kϕ(k⃗) = +1 (q = −1) which describes

how many times the total phase of the scattering matrix
ϕ(k) = arg(detS(k)) winds by 2π along a counterclock-
wise simple closed path that encloses the topological de-
fect (see Fig. 4b). A non-zero charge q ̸= 0 indicates that
a zero or a pole cannot suddenly disappear when the pa-
rameter δ slightly varies, although they can move in the
complex k⃗-plane. Only a collision of a +1 charge with a
−1 charge can result in their mutual annihilation, which
signifies that at this parameter value δ a resonance mode

and a zero mode coexist.

CONCLUSION

We have revealed a physical mechanism based on local
symmetries that leads to the creation of BICs in com-
pact photonic networks without any geometrical symme-
try. The resulting BICs are formed as a consequence of
the collision of two topological defects (a pole and zero of
the scattering matrix) which leads to their annihilation.
The proposed BICs differ from scenarios, where BICs are
formed due to the presence of a global symmetry or where
they are the ”accidental” result of a parameter variation.
In particular, they do not require the degeneracy of two
(or more) resonant modes and they are based on a pre-
cise rule that allows to construct and control a ladder
of BIC states at multiples of a fundamental frequency.
Our microwave demonstration can be extended to other
wave platforms ranging from optics to acoustics and wa-
ter waves and provides a new way of achieving and uti-
lizing BICs in complex systems.

∗ tkottos@wesleyan.edu
[1] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos,
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Experimental Characterization of the Complex
Network

To determine the parameters entering the numerical
simulation, we have measured the different cable lengths
as l16 = 726mm, l34 = 644mm, l23 = 310mm, and l45 =
l46 = 245.7mm. Have in mind that the real length is
also including lengths from the T junctions which are
18mm. Additionally we assume that the phase-shifters
optical length is equivalent to the optical length of cable
l45 when we have δ = 0mm corresponding to a fixed
real length of the phase shifter. We extract the complex
refractive index n of the cables and phase-shifter based
on the transmission measurements. Comparing the wave
propagation through the coaxial cable, to the Helmholtz
equation for a 1D free and uniform medium, we can get
the transmission coefficient t as

t =
ψ(l)

A
= ei

ω
c Re(n)le−

ω
c Im(n)l , (S.1)

where we have the refractive index as n =
√
ϵ0, ω = 2πf

the angular frequency, and the cable length l. First, we
can get the real part of t as

Re(t) = cos[
ω

c
Re(n)l]e−

ω
c Im(n)l , (S.2)

where we can see the cos terms is oscillation part, which
could give us the Re(n) based on our measured t in a
frequency range and measured cable length l. Second,
the imaginary part of refractive index n can be obtained
based on the transmittance T = |t|2 which is of the form
of

T = |t|2 = e−
2ω
c Im(n)l , (S.3)

where we can get Im(n) by fitting the curve of trans-
mittance versus frequency for certain cable length l. To
avoid the influence of the SMA connector effect on the

cable length, in our measurement, we use the ratio of
transmission t1/t2 for two cables with different length l1,
l2. In this way, we only need the cable length differ-
ence so that we can get rid of the error from the SMA
connector and get more accurate Re(n) and Im(n). By
fitting the transmission curves, we get Re(n) = 1.212
and Im(n) = 0.002 for coaxial cables. For the phase
shifter, we obtain the refractive index as Re(n) = 1.004
and Im(n) = 0.002. Note, that the Im(n) is frequency de-
pendent, which we ignored thus taking only an average n
for the whole investigated frequency range into account.
The electrical length of the cables and phase shifter are

defined as the measured geometrical length multiply the
real part of refractive index. We have the δ to character-
ize the phase shifter geometrical length shift with δ = 0
corresponding to a total electrical length of phase shifter
equals to be that of l46 and increase δ corresponding in-
creasing the electrical length of phase shifter.

In our modeling, to get better fit for the theory with
experiment, we adopt the measured cable lengths and the
complex refractive index, as well as the T junction length
as the central value, and give each variable a fluctuation
range. Then, we use surrogate optimization method in
Matlab to find the parameter set that gives the best fit for
the transmittance and reflectance curves over the whole
0.5 − 6.5GHz range. The fitted geometrical lengths are
l16 = 764.4mm, l34 = 686mm, l23 = 350mm, l45 = l46 =
286mm, l13 = l25 = 15mm, refractive index for cable
is nc = 1.212 + 0.0022i, and refractive index for phase
shifter is np = 1.004 + 0.002i. The slight difference with
respect to the geometrically measured physical lengths
of the cables is attributed to the presence of T-junctions
that add an additional length that has to be included
in the modeling and the precision that the permitivities
of the cables have been extracted. For the phase shifter
the electrical length is l̃56 = 286 · nc + δ · np, with δ the
detuning parameter and the imaginary part of the length
representing loss.
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